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Abstract

Starch within the endosperm of most species of the Triticeae has a unique bimodal granule morphology comprising
large lenticular A-type granules and smaller near-spherical B-type granules. However, a few wild wheat species

(Aegilops) are known to lack B-granules. Ae. peregrina and a synthetic tetraploid Aegilops with the same genome

composition (SU) were found to differ in B-granule number. The synthetic tetraploid had normal A- and B-type starch

granules whilst Ae. peregrina had only A-granules because the B-granules failed to initiate. A population segregating

for B-granule number was generated by crossing these two accessions and was used to study the genetic basis of

B-granule initiation. A combination of Bulked Segregant Analysis and QTL mapping identified a major QTL located

on the short arm of chromosome 4S that accounted for 44.4% of the phenotypic variation. The lack of B-granules in

polyploid Aegilops with diverse genomes suggests that the B-granule locus has been lost several times
independently during the evolution of the Triticeae. It is proposed that the B-granule locus is susceptible to

silencing during polyploidization and a model is presented to explain the observed data based on the assumption

that the initiation of B-granules is controlled by a single major locus per haploid genome.
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Introduction

Whilst much is known about the synthesis of starch polymers

in plants, little is known about starch-granule initiation or

the determination of granule size and shape. Starch granules

vary in size and shape between plant species showing that

granule morphology is determined primarily by genetic

factors. Members of the Triticeae grass family, which
includes the economically important cereals wheat, barley,

and rye, as well as wild grasses such as Aegilops, have, in

their endosperm, starch with unique bimodal granule

morphology (Evers 1971; Parker, 1985; Jane et al., 1994).

Each plastid in the endosperm of these species contains

a single, lenticular A-type granule and several near-spherical

B-type granules. In wheat, the A-type granules are 20–30

lm in diameter and the B-type granules are 2–7 lm in

diameter. The B-type granules form within wheat endo-

sperm approximately 10 d later than the A-type granules

(Parker, 1985; Bechtel et al., 1990) and at least some of

them are found within stroma-filled tubules (stromules)

emanating from the plastids (Parker, 1985; Langeveld et al.,

2000). By contrast, the single A-type granule is confined to
the main body of the plastid. Thus, the A- and B-type

granules found in the Triticeae endosperm are the products

of two granule-initiation events that are separated in time

and space.

In contrast to the variation in starch granule-size distribution

between species, very little genetic variation is observed between

cultivars of domesticated wheat (Stoddard, 1999) and barley

(Oliveira et al., 1994). However, the small variations that do

Abbreviations: WGIN, Wheat Genetic Improvement Network; TR, Tools and Resources; LOD, divergent log-of-odds.
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exist have been shown to influence processing in both food

and non-food industries. The small B-granules have both

positive and negative impacts on industrial use. They do not

precipitate during some wet processing procedures and are lost

in the waste stream thereby decreasing yield and increasing the

cost of managing waste treatment (Stoddard and Sarker,

2000). In wheat, B-granules negatively affect flour processing

and bread-making quality (Park et al., 2009), but positively
affect pasta making (Soh et al., 2006). This is thought to be

due, at least in part, to the swelling capacity of B-granules:

they can bind more water than A-type granules (Chiotelli

et al., 2002). In barley, it has been suggested that B-granules

negatively affect beer making (Bathgate et al., 1974). Half of

the B-type granules are degraded during malting representing

a 5% loss in potential alcohol production (Tillett and Bryce,

1993). Furthermore, the small B-type granules remaining after
malting only partially gelatinize during mashing whilst the

large A-type granules fully gelatinize. The partially-gelatinized

B-granules make the wort very viscous and therefore difficult

to filter and contribute to an undesirable haze in the final

product.

Despite the lack of variation in starch-granule-size distri-

bution within domesticated wheat and barley, a few species

of Aegilops are known to have normal A-type granules, but
are lacking or have reduced numbers of B-type granules

(Stoddard and Sarker, 2000). This suggests that there are

genes in the Triticeae which specifically control the forma-

tion of B-type granules and which are not required for

A-granule synthesis. As none of the five genotypes of

Aegilops lacking B-granules that were identified by Stod-

dard and Sarker (2000) has the same genome composition

as any Aegilops with a normal B-granule number, the
identification of the gene or genes responsible for B-granule

initiation using traditional mapping approaches were pre-

cluded. To circumvent this, synthetic lines were examined to

identify material with a different granule size-distribution to

the natural species but with an equivalent genome compo-

sition. A cross between a synthetic and a natural Aegilops

with varying granule-size distributions provided an oppor-

tunity to investigate the genetic basis of B-granule initiation.

Materials and methods

Plant material

Aegilops accessions (Ae. crassa four accessions 2240001–2240004,
Ae. peregrina seven accessions 2070001–2070007, Ae. tauschii
accession 2230001), and the Aegilops/wheat addition lines were
supplied from the John Innes Centre germplasm collection,
Norwich, UK by Dr Steve Reader. The synthetic Aegilops KU37
and KU41 were supplied from the Plant Germplasm Institute,
Faculty of Agriculture, Kyoto University, Japan by Dr Sadao
Sakamoto.

Grains were germinated on filter paper, in the dark at 17 �C and
transferred to cereal mix [John Innes no.2, 30% grit, pH to 7.5
with lime and containing Exemptor (thiacloprid) for aphid
control]. Seedlings were allowed to establish for 1–2 d and then
vernalized for 6–8 weeks at 6/8 �C for a 16/8 h day/night. F2 plants
for segregation analysis were grown in the John Innes Centre field
plots in 2008. No fertilizer or pesticides/fungicides were applied.

All other plants were grown in individual pots in cereal mix in a
greenhouse at a minimum temperature of 12 �C or in a controlled-
environment room at a constant temperature of 15 �C, with 16/8 h
light/dark and 70% humidity.

Microscopic determination of the B-granule phenotype

To assess the B-granule phenotype qualitatively, individual seeds
were cut to reveal the endosperm and the cut surface was scratched
to remove a sample of starch to a glass slide. Lugol’s solution
(Sigma–Aldrich, UK) was added to stain the starch which was
then observed under a light microscope. The presence or absence
of large numbers of small B-type granules was noted.

For quantitative measurement of the proportion of small
granules, one-quarter to one-third of a seed was removed and
ground in 0.5 ml of water in a 4 ml tube containing a ball bearing
(9 mm diameter) using a Geno/Grinder 2000 (SPEX CertiPrep Ltd,
UK) at 1500 strokes min�1 for 20 s. 15 ll of the extract was placed
on a glass slide together with 5 ll of Lugol’s solution (Sigma-
Aldrich, UK) and the slides were observed under a light micro-
scope (310 objective). A minimum of three images from different
areas of each slide were taken. These micrographs were analysed
using the count/size algorithm incorporated within the Image
Proplus image analysis software (www.MediaCy.com) which was
calibrated against the microscope objective. Granules were
assessed as dark objects against a light background and size and
roundness filters were further used to prevent counting of non-
starch material. For size-distribution measurements, clean image
borders were used and touching objects were split using the
watershed split and manual split functions. The data were divided
into two classes, granules >10 lm or <10 lm diameter and
the percentage in each class returned. The data for a minimum of
three aliquots of each extract were used to provide a value for
a single grain.

Quantification of the number of granules per endosperm

The methods used in Burton et al. (2002) for counting granules in
developing barley endosperm were adapted for use with developing
Aegilops. Endosperm dissected from an individual developing
grain was homogenized in 500 ll extraction medium (50 mM
HEPES pH 7.8, 10 mM EDTA, 10 mM DTT, and 0.1 mg ml�1

proteinase K) using a Genogrinder, (1500 rpm, 20 s). The
homogenate was incubated at 37 �C for 1–1.5 h, centrifuged at
28 000 g for 10 min and the supernatant discarded. The pellet was
washed successively in 1 ml aliquots of 20 g l�1 SDS (once) and
water (twice) and the resulting starch preparation was resuspended
in 120–500 ll water (dependent on the size of the endosperm).
Aliquots (50 ll) of the suspension were removed and combined
with 100 ll iodine and 850 ll water. The number of granules ml�1

was estimated using a haemocytometer slide with a unit volume of
0.00625 mm3. For each single-grain extract, two separate dilutions
were made and each was examined on an individual slide. The
number of granules per unit volume was determined from five
images per slide using Image ProPlus software as described above,
with the exception that for counting data, clean borders were
applied to two sides of the image only. Data for granule-size
distribution was also recorded by re-analysing the images as
described above. The data were used to calculate the number of
granules per endosperm, and the number and % of small granules.

DNA preparation

Genomic DNA was extracted from 50 mg of leaf tissue using the
Qiagen DNeasy 96 Plant Kit, according to the manufacturer’s
instructions except that a Genogrinder was used instead of a
TissueLyser for grinding samples. Samples were ground in the
Genogrinder at 1500 strokes min�1 for 1.5 min. This procedure
yielded 1–15 lg of DNA, at a concentration of 5–60 lg ll�1.
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The DNA concentration was adjusted to 4 ng ll�1 and the DNA
samples were stored at –20 �C.

Genotyping

Markers were chosen from two publically-available COS marker
collections, the Wheat Genetic Improvement Network (WGIN)
(http://www.wgin.org.uk/resources/Markers/TAmarkers.php) and
Tools and Resources (TR) collections (http://www.modelcrop.org/
cgi-bin/gbrowse/brachyv1/). The labelled primers for these markers
are available upon request, whilst stocks last from Dr S Griffiths,
John Innes Centre. All markers were designed to produce PCR
products ranging from 100–600 bp in length. Reverse PCR primers
were directly labelled with a fluorescent dye (6-FAM).

Most of the markers were analysed as follows. PCR products
were amplified from 10 ng of genomic DNA in 6.25 ll reactions
containing 3.125 ll Qiagen HotStarTaq Master Mix and 2 lM
each of the forward and reverse primers. PCR amplifications were
performed on a Peltier Thermal cycler using the following
programmes. For WGIN markers: 95 �C (15 min), 39 cycles of
[95 �C (0.5 min), 58 �C (0.5 min), 72 �C (0.5 min)], hold at 72 �C
(5 min) then at 10 �C. For the TR primers: 94 �C (10 min), 16
cycles of [95 �C (0.5 min), 58 �C (1 min), decreasing by 0.5 �C per
cycle to 50 �C, 72 �C (1 min)], 25 cycles of [94 �C (0.5 min), 50�C
(1 min), 72 �C (1 min)], hold at 15 �C.

The PCR products were prepared for analysis as follows. The
PCR reaction was diluted 30-fold in sterile distilled water and then
1 ll was added to 9 ll of a mixture of GeneScan� 500 LIZ� Size
Standard (Applied Biosystems, USA) and highly deionized
(Hi-Di)TM (Applied Biosystems, USA) formamide mixture. The
mixture was prepared by adding 5 ll of GeneScan� 500 LIZ� Size
Standard to 1 ml Hi-Di TM formamide. All samples were
submitted to the John Innes Genome Centre for genotyping using
a POP7 column attached to a 3730xl� DNA Analyzer (Applied
Biosystems, USA). The results were analysed using GeneMapper
v4.0.

A minority of the markers were also analysed by single strand
conformation polymorphism (SSCP) essentially according to
Martins-Lopes et al. (2001). The PCR products were amplified in
15 ll reactions containing 5 ll of DNA (10 ng ll�1), 1.5 ll of
Forward and Reverse primer (2 lM), 0.07 ll Taq polymerase
(Roche), 1.5 ll of PCR buffer (supplied with the polymerase,
containing MgCl2), 1.5 ll of dNTP (25 mM)m, and water. The
PCR products were denatured and separated on a vertical MDE�
non-denaturing gel made with mutation detection enhancement
(MDE) gel solution (16.5 ml; BMA, Rockland ME, USA), TTE
buffer (2 ml; Severn Biotech Ltd., Kidderminster, Worcs., UK),
50% glycerol (12 ml), and 35 ml of water, and polymerized with
300 ll of 10% APS and 30 ll of TEMED. Following electropho-
resis at 4 W and 5 �C, the products were visualized with silver stain
as described by Bassam et al.(1991).

Four polymorphic markers (TR126, TR132, TR119, 4G) were
identified and scored in Chinese Spring–Ae. peregrina addition
lines (Friebe et al., 1996) containing the following chromosomes
(or chromosome arms) from Ae. peregrina: 4U, 4U (short arm),
4U (long arm), 4S, 4S (short arm), 4S (long arm).

Construction of genetic map and QTL analysis

Linkage analysis and map construction was carried out using
JoinMap� version 3.0 (Van Ooijen, 2006). Linkage groups were
determined using a Divergent log-of-odds (LOD) threshold
of 4.0 and genetic distances were computed using the Kosambi
regression. Segregation ratios of markers were determined and
statistically tested for deviations using the chi-square test. QTL were
detected by Composite Interval Mapping as implemented
in Windows QTLCartographer (Wang et al., 2004), Model 6, with
five markers, 1 cM walking speed and a 10 cM window.
A LOD threshold of 3.0 was used which is above the value of 2.8
calculated from 1000 permutations using a significance level of 0.01.

Statistical analysis

Analysis of variance for the markers defining the QTL peak
(TR129 and 4G) was performed using GenStat 11th edition (Payne
et al., 2008) and orthogonal contrasts (linear and quadratic
components) were used to determine the degree of dominance of
these markers.

Results

Analysis of starch-granule-size distribution in Aegilops
species

In a previous study, Stoddard and Sarker (2000) found five

Aegilops species that lacked or had low numbers of small,

B-type starch granules. Accessions from these and addi-
tional Aegilops species were obtained from the John Innes

Centre germplasm collection and assessed by microscopic

examination of the endosperm starch for the abundance of

small spherical granules (B-type and small A-type) relative

to the large lenticular granules (A-type). All of the Ae.

crassa and Ae. peregrina accessions examined had relatively

few small granules (data not shown) and the results were

therefore in agreement with those of Stoddard and Sarker
(2000). The genome composition and granule morphology

of these accessions are shown in Table 1 together with those

of a selection of other species and accessions with normal

B-granule content.

Synthetic SU tetraploids possess B-granules

The natural tetraploids Ae. peregrina and Ae. kotschyi both
have few, if any, B-granules (Table 1) and both have the

same two genomes (S and U). To determine whether

polyploidization between the S and U genomes is always

associated with the lack of B-granules, starch from the seeds

of two synthetic SU tetraploids, KU37 and KU41, was

examined. KU37 was derived from a cross between the

diploids Ae. sharonensis (Ssh) and Ae. umbellulata (U) and

KU41 from a cross between the diploids Ae. bicornis (Sb)
and Ae. umbellulata (U) (Tanaka, 1955, 1983). Unlike the

natural SU tetraploids, both synthetics were found to have

B-type granules (Fig. 1).

B-granule initiation fails to occur in Ae. peregrina

The absence of the smaller B-type granules in Ae.

peregrina could be due to several factors. For example, B-

type granules might initiate normally in these species but

then continue to grow to form additional A-granules.

Alternatively, B-granules could fail to initiate leading to

the presence of A-granules only. To investigate this, the

timing and extent of granule initiation during grain

development in the natural (Ae. peregrina) and synthetic

(KU37) tetraploids with S and U genomes were compared
(Fig. 2).

A time-course of grain development (Fig. 2A, B) and

granule initiation (Fig. 2C, D) was conducted on plants

grown together in a controlled environment room to

minimize the environmental effects on granule size and

Control of B-granule content in Aegilops | 2219
 at Periodicals A

ssistant - L
ibrary on February 5, 2014

http://jxb.oxfordjournals.org/
D

ow
nloaded from

 

http://www.wgin.org.uk/resources/Markers/TAmarkers.php
http://www.modelcrop.org/cgi-bin/gbrowse/brachyv1/
http://www.modelcrop.org/cgi-bin/gbrowse/brachyv1/
http://jxb.oxfordjournals.org/
http://jxb.oxfordjournals.org/


number. The results showed that, in KU37, the number of

granules per endosperm remains constant from 4 days after

anthesis (DAA) until approximately 19 DAA. The number

of starch granules within the endosperm then doubles

during the final 2 weeks of grain filling. There are therefore

two waves of granule initiation in KU37, as in most other

Triticeae species. In Ae. Peregrina, however, the number of

granules per endosperm remains constant from 4 DAA until
maturity.

The granule-size distribution throughout development was

also recorded (Fig. 2D). These data show that the proportion

of small granules (<10 lm in diameter) in Ae. peregrina

decreased steadily throughout development. At maturity, there

were still some granules in Ae. peregrina that had not grown

larger than 10 lm in diameter. This suggests that granules that

were initiated before 4 DAA grew continuously until maturity
(Fig. 2D). In KU37, the proportion of small granules also

steadily decreased prior to the initiation of the B-granules at

approximately 19 DAA. At this point, the increase in the

number of granules observed in the endosperm (Fig. 2B)

caused the proportion of small granules in the endosperm to

remain constant throughout the rest of development.

The small granules present in mature Ae. peregrina grains are,

therefore, small A-type granules whilst those in KU37 are
a mixture of small A-type and the newly-formed B-type

granules. These data suggest that, in Ae. peregrina, the A-type

granules usually initiate early in development but that

the second wave of initiation that would normally give rise to

B-type granules fails to occur.

The B-granule-less trait segregates in a tetraploid F2
population

The phenotypic variation within the SU tetraploids provided
an opportunity to investigate the genetic basis of B-granule

initiation. Ae. peregrina was hybridized with both KU37

and KU41. Ae. peregrina was used as both the male and the

female parent, but only the crosses with Ae. peregrina as the

male parent were successful. The F1 seed produced was

Fig. 1. Starch granule morphology. Light micrographs of iodine-

stained starch from mature endosperms of the synthetic tetra-

ploids KU37 and KU41, the natural tetraploid Ae. peregrina and

a typical F1 seed from a cross between KU37 (female) and Ae.

peregrina (pollen donor). The scale bar is 100 lm.

Table 1. Starch granule morphology and genome composition of

selected Aegilops species

The genome composition of five Aegilops that lacked or had low
numbers of small, B-type starch granules (Stoddard and Sarker,
2000) are shown together with those of a selection of other species
and accessions with normal B-granule content.

Granule
morphology

Speciesc Synonymsd Genome
symbolse

A-type only

(no B-type)

Ae. peregrinaa, b Ae. variabilis SU

T. peregrinum

Ae. kotschyia T. kotschyi US

Ae. crassaa, b T. crassum DM

Ae. crassaa T. crassum DDM

Ae. juvenalisa T. juvenale DMU

A- and B-type Synthetic KU37b – USsh

Synthetic KU41b – USb

Ae. umbellulataa T. umbellulatum U

Ae. comosaa T. comosum M

Ae. longissimaa T. longissimum Sl

Ae. sharonensisa Ae. longissima var.

sharonensis

Ssh

T. sharonense

Ae. bicornisa T. bicorne Sb

Ae. tauschiib Ae. squarrosa

T. tauschii D

a Granule morphology according to Stoddard and Sarker (2000).
b Granule morphology according to this study.
c Nomenclature follows van Slageran (1994).
d Synonyms follows Kimber and Feldman (1987).
e Genome symbols follow the Wheat Classification System

(www.k-state.edu./wgrc/Taxonomy).
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sown and the resulting plants were allowed to self-fertilize.

Viable F2 seed was produced by the KU37 hybrid but not

by the KU41 hybrid. Evidence that self-fertilization of

KU37 had not taken place came from an examination of

the F2 plants. The phenotypes of the F2 plants were varied

and showed characteristics inherited from Ae. peregrina as

well as from KU37 (see Supplementary Fig. S1 at JXB

online).
To test whether the lack of B-granules in Ae. peregrina

was recessive or dominant, the phenotype of the F1 seed

produced from crosses between the two synthetics (KU37

and KU42) with Ae. peregrina was determined. All of the F1

progeny from both the KU37 (Fig. 1) and KU41 (data not

shown) crosses had B-type granules. This suggested that the

lack of B-granules in Ae. peregrina is recessive.

To investigate the pattern of inheritance of the B-granule-

less trait, the segregation of B-granule number was exam-

ined in the progeny from the Ae. peregrina3KU37 cross.

Ninety-three F2 seeds from eight different F1 plants were

sown and the F3 seeds from individual F2 plants

were collected and phenotyped (Fig. 3). A preliminary
qualitative inspection of a small sub-set of the F3 seeds

suggested that the F2 population was segregating for the

B-granule-less trait. Seeds like those of the parents, with

high or low numbers of B-granules, were observed as well as

seeds with intermediate numbers of B-granules (Fig. 3A).

Fig. 2. Starch granule number during grain development. Grains were harvested at various stages of development from 4 days after

anthesis (DAA) through to maturity. (A) Images of developing grains (scale bar 5 mm) and iodine-stained starch (scale bar 50 lm) from

KU37 (left) and Ae. peregrina (right) from 4 DAA to maturity. (B) Fresh weight, (C) number of starch granules, and (D) percentage of

granules less that 10 lm diameter were also recorded. Values are the means 6SE of measurements on a minimum of three separate

grains.
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To analyse the phenotypic distribution in greater depth,

the percentage of small granules (with diameters of 10 lm or

less) in 4–16 F3 seeds from each F2 plant was quantified

using image-analysis of light micrographs such as those

in Fig. 3A. The small granule category in this analysis does
not distinguish between small A-granules which failed

to grow and B-granules. Of the 93 F2 plants sown, 84

produced seed which were phenotyped. In agreement with

the preliminary qualitative study, granule quantification

showed that the proportion of small-granules varied

amongst the seeds of the F2 plants (Fig. 3B) ranging from

less than 30% small granules to over 65%. The variation

observed was near-continuous with slight discontinuites in

the distribution at either end of the range. The frequency

distribution of F2 plants with different mean granule sizes
(Fig. 3C) was near-normal but there was a suggestion of

a separation into two groups: 14 plants had <37% small

granules and 70 plants had >37% small granules. Qualita-

tive examination of the seeds of the 14 F2 plants with

low numbers of small granules showed that their starch

Fig. 3. Analysis of granule-size distribution. The F3 seeds were harvested from individual F2 plants. Starch granules were extracted from

the endosperm of 4–16 individual F3 seeds per plant. The proportion of small-granules (10 lm or less in diameter) in the endosperm

was examined by microscopy and quantified by image analysis. (A) Examples of micrographs of seeds with low, medium, and high

numbers of small granules. The percentage of small granules is indicated. The scale bar is 100 lm. (B) The percentage of small granules

in individual F3 seeds from 84 separate F2 plants. Open squares are values for individual seeds and closed diamonds are means for

individual F2 plants. (C) The frequency of F2 plants per granule size category. Mean granules sizes for individual F2 plants are plotted

against granule-size bins of three units.
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granule-size-distributions were indistinguishable from that

of the Ae. peregrina parent. The 14:70 ratio is not

statistically significantly different from the 1:3 distribution

expected for the segregation of a single recessive gene (Chi2

test P¼0.078). However, other more complex gene models

cannot be ruled out. Overall, these data suggest that the

inheritance of granule-size distribution can be treated as

a quantitative trait but that the phenotypic distribution
in the F2 could also be explained by a poorly-resolved

Mendelian trait, possibly indicating segregation at a single

locus.

Genes associated with B-granule content are located
on the short arm of chromosome 4S

Bulked Segregant Analysis was used to identify molecular

markers associated with loci that influence B-granule

number. DNAs from 30 F3 seeds which differed in

B-granule content (15 with normal numbers of B-granules
and 15 lacking B-granules) were pooled into two bulks. In

each bulk, the individuals will be enriched in the particular

genomic regions responsible for the B-granule trait but will

be segregating in other regions.

First, to identify suitable markers, a total of 197 markers

designed from wheat or rice DNA sequences [comprising

74 single-sequence-repeat (SSR) and 123 conserved-

orthologous-sequence (COS) markers] were tested on the
parental DNAs. As the S and U genomes of Aegilops are

known to be most similar to the B (Sarkar and Stebbins,

1956) and D (Zhang et al., 1998) genomes of wheat,

respectively, the SSR markers used were randomly selected

from these wheat genomes. Of the primers tested, 194

successfully amplified a product from the Aegilops genome

of which 85 (32 SSR and 53 COS markers) were poly-

morphic between the parents. This confirms that wheat SSR
markers can be used successfully to identify polymorphisms

in Aegilops, as was shown previously (Adonina et al., 2005;

Bandopadhyay et al., 2004) and it also shows that rice COS

markers can be used to amplify homologues in other

grasses.

The 85 polymorphic markers (COS and SSR) were tested on

the two bulked DNA samples. These markers were distributed

randomly throughout the genome and included each wheat

homoeologous chromosome group. Four markers were found
to be polymorphic between the bulk with normal B-granule

content and the bulk lacking B-granules. These were the COS

markers TR119, TR129, 4G, and the microsatelite marker

Psp3078 (Bryan et al., 1997; Stephenson et al., 1998). Markers

4G and Psp3078 have been mapped to the group 4

chromosomes of wheat (Sorrells et al., 2003; http://wheat.

pw.usda.gov/wEST/binmaps/wheat4_rice.html). The other two

markers were designed to genes on rice chromosome 3
(Table 2) which is known to be co-linear with group 4

chromosomes of wheat (The rice chromosome 3 sequencing

consortium, 2005) and with barley 4H (bioinf.scri.ac.uk/

strudel/). This suggests that a locus determining B-granule

initiation is located in a region of the Aegilops genome

corresponding to the Triticeae group 4 chromosomes.

The Aegilops and wheat genomes are known to be highly

co-linear, for example, wheat chromosome 4D is homoeolo-
gous to Aegilops 4S (Zhang et al., 2001). Thus, it is likely that

the markers that were found to be linked to the B-granule

phenotype are on chromosome 4S or 4U in Ae. peregrina. To

test this idea, these markers and others also predicted to be

on the group 4 chromosomes of wheat (based on co-linearity

with rice and Brachypodium) were tested for polymorphism

between wheat cv. ‘Chinese Spring’ and Ae. peregrina

(Table 2). Four polymorphic markers (TR126, TR132,
TR119, 4G) were identified and scored in Chinese Spring–

Ae. peregrina addition lines (Friebe et al., 1996). The analysis

showed that the polymorphic bands from all four markers

map to chromosome 4S. Markers TR126, TR132, and 4G

Table 2. COS and microsatellite markers used to genotype the Aegilops

The COS markers were designed to span one or more introns in a rice gene or were designed against a wheat transcript. All markers are
available via www.modelcrops.org. The Brachypodium homologs were identified by BLASTn using the wheat sequences (www.brachybase.
org).

Marker Forward primer
(5#-3#)

Reverse primer
(5#-3#)

Source sequence Wheat homologue
(EST or EST assembly)

B. distachyon
homologue (E value)

TR119 a, c GCAGCAGGAATTCTACATCAG TGACGTGGAAGAGGTTCAC Os03g52780 Ta32373_4565 Bradi1g68120 (1e�114)

TR129a TTTGTAAGGGCATCCAACATG CTGAGTAGTACCGAAGCAC Os03g49230 CD865921 Bradi1g11700 (5e�42)

Psp3078a TTATTTTGCAGCTTGACATA TTAGGGCTCATAAGGGTCTA Microsatellite – –

4Ga, c GCAATCACGAACGGCTCGATCA ATCTGGCAGCTTGCCAAGGCT BE442666 BE442666 Bradi1g11670 (1e�60)

TR113b TCCTACAATCAAGGCTCTGTG TTCTCTGAAAGCCTCTTCCAG Os03g03470 CV768642 Bradi1g76790 (1e�51)

TR126b, c CCGGATGCTGTTTGTATCCTG TCATTCTTGGAGAACAGCGAG Os03g42810 CA735797 Bradi1g07410 (1e�148),

Bradi5g24240 (1e�135)

TR132 b, c GTTCCATTCCCTAAGAAGATC GTCCTGGTCAAAGTGTTGAG Os03g50230 CD906287 Bradi4g00230 (3e�21)

TR133b CATTGAACAGCCTTGGCAATG TCTGCCAGATACTGTTCAGAC Os03g51830 TA25917_4565 Bradi1g10000 (7e�81)

TR151b GGTATAAGCCAGAGGTTGGTG AACCGCCAGCGCTTTGGAG Os04g43922 TA38377_4565 Bradi1g04570 (1e�107)

a Markers used for Bulked Segregant Analysis.
b Additional markers used for linkage analysis.
c Markers shown by analysis of Chinese spring–Ae. peregrina addition lines to be located on chromosome 4S.
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are located on the short arm of chromosome 4S and TR119

is located on the long arm of chromosome 4S. Thus, the

markers that are linked to the B-granule phenotype are on

Aegilops chromosome 4S.

A major QTL for granule size is located on chromosome
4S

To fine map the B-granule locus and to assess its

quantitative contribution to the control of B-granule

number, individuals from the Ae. peregrina x KU37 F2

population were screened with the markers shown in

Table 2. Linkage analysis showed that seven of the markers

tested formed a linkage group (Fig. 4A). None of the

markers used showed significant segregation distortion, i.e.

equal proportions of parental alleles were observed for all

markers across the population. QTL analysis using the

quantitative values for average granule size per F2 plant

(Fig. 3B) revealed a major QTL for granule size that was

associated with this linkage group (Fig. 4A). This QTL

explained 44.4% of the phenotypic variation of this trait

within the population. Three of the markers within the

linkage group had been mapped to the short arm of

chromosome 4S, including TR132 and TR126 which flank
the QTL peak. Thus, a major QTL for B-granule number is

located on the short arm of chromosome 4S.

As expected, the Ae. peregrina allele at the QTL had

a negative effect on the percentage of small granules

(<10 lm diameter). To investigate whether the effect of the

KU37 allele was additive or dominant, individuals were

categorized according to their alleles at the two markers

closest to the QTL peak (TR129, 4G) and the mean
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Fig. 4. Genetic location of the B-granule QTL on the short arm of chromosome 4S. (A) Genotype data for the linked markers shown in

Table 2 together with the granule-size phenotypes for 84 F2 plants (average granule size per F2 plant) shown in Fig. 3B were used to

calculate the position of a QTL responsible for variation in B-granule number. (B) The F2 plants were grouped according to the genotype

of markers 4G and TR129 and the mean value of the associated phenotype was assessed. Group AP, both markers are homozygous for

the Ae. peregrina genotype; KU, both markers are homozygous for the KU37 genotype; and AP/KU both marker are heterozygous.

Means are all significantly different at P <0.01. Values are means 6SE of the percentage of small granules per seed.
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phenotypic values were calculated (Fig. 4B). Individuals

carrying the Ae. peregrina alleles at TR129 and 4G had

an average of 42.7% small granules, whereas lines with the

KU37 alleles had a statistically significantly higher average

(60.8%, P <0.0001). Heterozygous individuals had an

intermediate average of small granules (49.5%), which was

significantly different from both homozygous classes

(P <0.01). The linear and quadratic components of these
markers were determined through contrasts to test the

additive and dominant nature of the QTL. The linear

(additive) contrast was highly-significant (P <0.01) whilst

the quadratic (dominant) contrast was not significant

(P¼0.18) suggesting that the effect of the KU37 allele was

additive.

Discussion

To understand the genetic basis of the B-granule trait,

Aegilops lines with and without B-granules were identified

and crossed to create an F2 population that was segregating
for B-granule content. Analysis of this population allowed

the identification of a major QTL controlling B-granules

within a linkage group of approximately 40 cM on the short

arm of chromosome 4S. Prior to this work, fertile crosses

between the Aegilops species with and without B-granules

were not possible due to the lack of observed variation in

granule morphology between sexually-compatible individu-

als. The key to this work was the identification of synthetic
polyploid Aegilops lines with the same genome composition

but different granule-size distribution from the natural

species. The analysis of granule size and number in Aegilops

during development showed that, as in other Triticeae

species, the B-type granules initiate later than the A-type

granules. In Ae. peregrina, the timing of A-granule initiation

appears to be normal but the second wave of granule

initiation fails to occur. Thus, the major B-granule locus on
chromosome 4S is required for the initiation of B-granules

but not for A-granules. This suggests that there are specific

genes in the Triticeae that control the initiation of B-type

granules without significantly affecting A-granule initiation.

All of the Aegilops species previously shown to lack

B-type granules are polyploid whereas their diploid progen-

itors have normal granule-size distributions (Table 1;

Stoddard and Sarker, 2000). However, not all Aegilops

polyploids lack B-granules and those that do have a variety

of different genome compositions. The association of the

trait with polyploids, but not diploids, and its lack

of association with particular genomes are characteristics

of a trait controlled by genes that are silenced during

polyploidization. A well-documented example of such a trait

in wheat is grain hardness which is controlled by the Ha

locus. The Pina and Pinb genes at the Ha locus are present
in the diploid progenitors of durum wheat [Triticum

turgidum (AB)] but were deleted from both the A and the B

genomes during the tetraploidization event. Consequently,

durum wheat is hard in texture. A survey of pin gene

polymorphism amongst diploid and polyploid Triticum and

Aegilops showed that, although the Ha locus is absolutely

conserved in diploid species, it has been deleted indepen-

dently and recurrently at least four times in different

polyploids (Li et al., 2008). Accumulating evidence suggests

that polyploidization is accompanied by extensive silencing

of genes (genetic and epigenetic) that occurs within 2–3

generations and probably starts during or soon after F1

zygote formation (Baum and Feldman, 2010; Feldman and
Levy, 2009). For example, up to 14% of the sequences

examined by DNA hybridization were lost in a cross

between Ae. sharonensis (Ssh) and Ae. umbellulata (U)

(Shaked et al., 2001). The genes affected vary from cross to

cross as shown by studies of the pin genes in synthetic

tetraploids created by crossing the diploid progenitors of

T. turgidum. The pin genes showed rearrangements in

approximately 1% of the synthetic tetraploids (Li et al.,
2008). These data show that (i) polyploidization can cause

gene deletion, (ii) loss of both homoeologues during

tetraploidization is possible, and (iii) most synthetic poly-

ploids inherit the parental gene sequences.

It is suggested here that the loss of B-granules might have

occurred during polyploidization in some Aegilops and the

following model is proposed to explain the genetic basis of

the B-type starch granule trait in the segregating population
of Aegilops studied here (Fig. 5). The natural tetraploid

Ae. peregrina (SU) was derived from diploid progenitors

Fig. 5. A model of the evolution of the B-granule-less trait in

Aegilops. The diploid progenitors (panel 1) have seven chromo-

somes each, but for simplicity, only the group 4 chromosomes are

shown. The position of the B-locus is indicated by a black bar.

This bar is omitted in panels 2 and 3 where the B-locus is

presumed inactive or deleted. Immediately following formation

of the tetraploids by polyploidization (panel 2, left-hand side), the

B-loci are present as in the diploid progenitors. However, genome

rearrangements following polyploidization lead to the loss of some

of the B-loci (panel 2, right-hand side). The cross between

Ae. peregrina and KU37 (panel 3) results in an F1 that is

heterozygous for the B-locus on chromosome 4S. The B-locus on

chromosome 4U is inactive. Thus, although the Aegilops used in

this study are tetraploid, only a single B-loci is responsible for the

initiation of B-granules.
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related to Ae. longissima (Sl) and Ae. umbellulata (U)

(Zhang et al., 1992; Kimber and Yen, 1989). Although the

original diploid progenitor accessions are unknown, it is

safe to assume that they had normal B-granule content

similar to all present-day diploid Aegilops species. There-

fore, it is expected that the U and the Sl progenitor genomes

each possessed the major locus on chromosome 4 de-

termining the presence of B-granules. It is proposed that
Ae. peregrina probably lost the ability to make B-granules

shortly after the tetraploidization event and that both of the

homoeologous B-granule loci were inactivated, either be-

cause of gene loss, epigenetic silencing or mutation. The

active alleles at these loci will be called BU and BS and the

inactive alleles, bU and bS. In the mapping population

derived from the cross between KU37 and Ae. peregrina, it

is proposed that the presence of B-granules was determined
primarily by the segregation of S-genome alleles (BS and bS)

and that the U genome alleles in both KU37 and Ae.

peregrina are inactive (bU). This model implies that, in the

creation of the KU37 synthetic tetraploid, the BU homoeo-

logue from Ae. umbellulata was inactivated whilst the BS

homoeologue from Ae. sharonensis remained functional.

The proposed model assumes that there is a single

locus per haploid genome controlling most of the varia-
tion in B-granule content and that there was no poly-

morphism at the B-granule locus on the U genome in our

population. It is the simplest model that is consistent with

our data. The major QTL on chromosome 4S and the

segregation ratio of the F2 phenotypes support the model

and the fact that B-granule-less species of Aegilops appear

to have evolved several times independently argues against

complex genetic control. However, alternative models
cannot be precluded at the moment. For example, it is

possible that both B-loci in the synthetic are active and

that there are two segregating loci in the F2 population

rather than one. The quantitative nature of the phenotypic

segregation could also be taken to indicate the presence of

multiple contributing loci. Alternatively, it may reflect the

technical difficulty of accurately estimating the number of B-

granules from measurements of average granule size. The size-
distributions of A and B granules overlap in Aegilops more

than in wheat or barley, making assignment of granule type

based on granule size alone more precarious. In addition,

small A-granules and B-granules are difficult to distinguish by

shape, there is extensive variation in granule-size distribution

from seed to seed within a genotype, and granule size is

known to be affected by the environment. The most precise

phenotyping method would be to assess the second granule
initiation event which defines B-granules per se, but the

determination of granule numbers through grain development

(Fig. 2C, D) was impractical in the current study where large

numbers of samples of half-seeds needed to be analysed.

Despite the limitations outlined above, a major QTL de-

termining B-granule content was identified which showed

significant differences between allelic classes and explained

a large proportion of the phenotypic variation. To test the
model, a larger and more extended genetic map is currently

being constructed.

The putative homoeologous genes that underlie the

B-granule locus on the short arm of chromosome 4S and

4U in Aegilops have not yet been identified. Orthologues of

the genes controlling B-granules in Aegilops are likely to be

present in other Triticeae and there is evidence to suggest

that these orthologues in wheat and barley may also

be located on the group 4 chromosomes. In wheat, a QTL

affecting A:B granule ratio was found on chromosome 4B
(Batey et al., 2001) and, in a separate study, QTLs

associated with granule size were found on 4DS (Igrejas

et al., 2002). In barley, a QTL affecting the shape of the

B-granules was found on chromosome 4H (Borém et al.,

1999). However, in all of these studies, QTLs influencing

various aspects of granule size and/or shape were also

associated with other chromosomes.

Our analysis suggests that the role of the B-granule gene
in the Triticeae is to stimulate granule initiation since the

recessive (mutant) allele conditions the lack of B-granules.

Genetic analysis indicated that the active allele had an

additive effect, meaning that the number of B-granule

initiations increased with increasing gene dose. It remains

possible that the B-granule locus also influences the number

of A-granules that initiate since there were fewer A-granules

in Ae. peregrina than in KU37. However, near-isogenic lines
with and without B-granules will be needed to test this.

It will be interesting to discover whether the initiation of

A- and B-granules both require genes with similar functions

or whether each process is different and also whether

orthologues of the B-granule gene are found in grass species

that do not possess A- and B-type granules, such as rice and

Brachypodium.

Genes that have been shown to affect starch granule
initiation and/or granule size in other plant species

include isoamylase (Burton et al., 2002; Bustos et al.,

2004), starch synthase IV (Roldán et al., 2007) and starch

phosphorylase (Satoh et al., 2008). Of these, only starch

synthase IV has been shown to stimulate granule initia-

tion (isoamylase and phosphorylase inhibit granule initi-

ation since loss of these activities leads to an increase

in the number of small granules). Attempts to map the
SSIV gene in Aegilops have so far failed due to lack of

polymorphism in the available sequence, but it is not

predicted from synteny to be located close to the B-granule

locus. There is only one SSIV gene in Brachypodium

(Bradi2g18810) and the wheat SSIV orthologue is located

in a syntenous position on the long arm of chromosome 1

(Leterrier et al., 2008). Thus, the B-granule locus in the

Triticeae may encode a previously uncharacterized starch
biosynthetic gene.

The genetic analysis suggests that fine mapping and

eventual identification of the gene(s) responsible for

B-granule initiation should be possible using this popula-

tion of Aegilops and the phenotyping techniques described.

Recombinant inbred lines from the Aegilops population

are currently being produced to test this. Identification of

the B-granule gene in the future will provide further
understanding of granule-initiation in plants in general, as

well as enabling manipulation of the A:B granule ratio in

2226 | Howard et al.
 at Periodicals A

ssistant - L
ibrary on February 5, 2014

http://jxb.oxfordjournals.org/
D

ow
nloaded from

 

http://jxb.oxfordjournals.org/
http://jxb.oxfordjournals.org/


domesticated Triticeae to create variant starches with

altered functionality.

Supplementary data

Supplementary data can be found at JXB online.

Fig S1. Variations in Ae. peregrina and KU37 plant
morphology.
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